B.SC. HONS. BIOTECHNOLOGY- 3RD SEMESTER UNIT PLANS

B.Sc. Hons Biotechnology 2021-22 Semester 3 Subject:- Immunology

Total units= 4 Theory marks = 67 Internal assessment= 8 Total marks =75

UNIT-I

	U.			
Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
 Introduction Cells of the immune system 	To discuss the overviews of immune system – Historical perspectives ii) Innate and acquired immunity iii) Clonal nature of immune response Hematopoiesis and differentiation, lymphocyte trafficking,Blymphocytes, T-lymphocytes, macrophages, dendritic cells, Natural killer cells and lymphocyte activated killer cells, eosinophils, neutrophils & mast cells	To understand general aspects of immune system like different components of the immune system,	classroom teaching with examples	Kuby Immunology (2006) by Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, Janis Kuby (W.H. Freeman).

Question Bank

Long answer type questions

- 1. Give the history of immunology
- 2. Explain innate and acquired immunity
- 3. Describe different types of immune cells
- 4. Describe the clonal nature of the immune system with diagram
- 5. Describe lymphocyte trafficking
- 6. Name the different types of phagocytic cells with well labeled diagrams.
- 7. Explain the process of hematopoiesis.

- 1. Define immunology
- 2. Define hematopoiesis

- 3. What are dendritic cells
- 4. Give the function of natural killer cells
- 5. Give the role of mast cells
- 6. Differentiate between innate and adaptive immunity
- 7. Differentiate between B and T lymphocytes.

Торіс		Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
1.	Organs of	Primary and secondary	То	Lecture cum	Kuby
	the immune	lymphoid organs,	understand	discussion	Immunology
	system	systemic function of	the		(2006) by
		immune system.	Generation		Thomas J.
2.	Lymphocyte	Cell surface proteins,	and		Kindt,
	Trafficking	Cell Adhesion	functions of		Richard A.
		molecules (Integrin,	these		Goldsby,
3.	Antigens	Selectin, Cadherin family	components,		Barbara A.
		and Ig Superfamily).	the antigen		Osborne,
		Immunogenicity Vs.	and its		Janis Kuby
		antigenicity, factors	characterstics		(W.H.
		effecting	to cause the		Freeman).
		immunogeneticity,	disease.		
		nature of immunogen,			
		epitopes, heptans and			
		antigenicity, pattern			
		recognition receptors.			

<u>Unit 2</u>

Question Bank

Long answer type questions

- 1. Describe the primary lymphoid organs
- 2. Describe the secondary lymphoid organs
- 3. Give the factors affecting the antigenicity of the antigens
- 4. Explain the cross reactivity of the antigen
- 5. Give the immunoglobulin superfamily
- 6. Describe pattern recognition receptors
- 7. What are cell adhesion molecules

Short answer type questions

- 1. Define antigen
- 2. Define immunogen
- 3. Difference between antigen and immunogen
- 4. What are haptens
- 5. Define epitopes
- 6. What are cell adhesion molecules
- 7. What are cell surface proteins

<u>Unit- 3</u>

Торіс	Teaching points	Specific	Methods	Resources
		objectives	/approaches	and links

				/techniques	
1.	Immunoglobulins	Structure of	То	classroom	Kuby
		antibody, antibody	understand	teaching	Immunology
		effector function,	the	with the use	(2006) by
		antibody classes	working of	of	Thomas J.
2.	Major	and biological	antibodies	blackboard	Kindt,
	histocompatibilit	activities, antigenic	to kill the		Richard A.
	y complex	determinants on	pathogen		Goldsby,
		Immunoglobulins,	and in		Barbara A.
		Immunoglobulins	immune		Osborne,
		superfamilies.	system.		Janis Kuby
		General organization	То		(W.H.
		and inheritance,	understand		Freeman).
		MHC	the role of		
		molecules and	MHC in		
		genes, genetic map,	recognition		
		cellular distribution,	of self and		
		regulation of MHC	non self		
		expression	cells.		
		and disease			
		susceptibility, antigen			
		presentation.			

Question Bank

Long answer type questions

- 1. Give the different types of antibody classes
- 2. What are MHC and give its types
- 3. Explain the processing of antigens in different types of MHC
- 4. Give the functioning of antibodies and their structures
- 5. Explain the general organization and inheritance of MHC genes
- 6. Explain the regulation of MHC expression

- 1. What are antibodies
- 2. Give full form of MHC
- 3. Give types of MHC
- 4. Give the role of IgM
- 5. Which antibody can cross the placenta and give its role
- 6. Which antibodies are involved in inflammatory responses

Unit	4	
------	---	--

	Omt 4						
TopicTeaching pointsSpecific objectivesMethods /approaches /techniques	Resources and links						

	Production of	The students	classroom	Kuby
1. Hybridoma	Monoclonal	will gain the	teaching	Immunology
Technology	Antibodies,	knowledge of	with power	(2006) by
	applications of	basic	point	Thomas J.
2. Antigen–Antibody	polyclonal and	immunological	presentation	Kindt,
interactions	monoclonal antibodies.	techniques.	of the topic	Richard A.
	Strength of	1	hybridoma	Goldsby,
	interaction, cross		technology	Barbara A.
	reactivity, antibody			Osborne,
	affinity, avidity.			Janis Kuby
	Antigen-antibody			(W.H.
	interactions as tools			Freeman).
	for research and			Delves PJ,
	diagnosis: precipitation			Martin SJ,
	and agglutination			Burton DR,
	reactions,			Roitt IM.
	immunodiffusion,			Roitt's
	immunoelectrophoresis,			essential
	immunoassays,			immunology.
	Enzyme linked			Wiley
	immunosorbent assay			Blackwell;
	(ELISA),			2011.
	Radioimmunoassay			
	(RIA), western blot,			
	Immunofluorescence.			

Question Bank

Long answer type questions

- 1. Explain the production of monoclonal antibodies
- 2. Give various functions of monoclonal antibodies
- 3. Describe the types of ELISA with well labeled diagrams
- 4. Give difference between immunodiffusion and immunoprecipitation
- 5. Explain western blot
- 6. Give the various types of immunodiagnostic techniques
- 7. Give applications of polyclonal antibodies

- 1. Define monoclonal
- 2. Give full form of ELISA and RIA
- 3. What are immunodiagnostic techniques
- 4. Explain cross reactivity
- 5. Define avidity and affinity

B.Sc. Hons Biotechnology 2021-22 Semester 3 Subject:- Animal cell culture

Total units=4

Theory marks=67 Internal assessment= 8 Total marks =75

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
 History of development of cell cultures Biology of cultured cells 	To discuss the history and natural surroundings for animal cells, simulating natural conditions for animal cells, metabolic capabilities of animal cells. The culture environment, cell adhesion,proliferation, differentiation, signaling, evolution of cell lines. Equipments and materials for animal cell culture technology	. The major emphasis of this course is to introduce the students to the field of Animal Cell culturing and its importance to mankind.	Lecture cum discussion	R. Ian Freshney, (2010) 6th Edition, Wiley- Blackwell. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications Butler, M (1996) Mammalian cell biotechnology. A practical approach (IRL, Oxford University Press)

<u>Unit 1</u>

Question Bank

Long answer type questions

- 1. Explain the history of animal cell culture
- 2. Describe the metabolic capabilities of animal cells
- 3. Describe how natural conditions can be simulated for animal cell culture
- 4. Explain cell adhesion molecules
- 5. Give the detail of various equipments and materials used for animal cell culture
- 6. Explain cell differentiation
- 7. Describe evolution of cell lines

Short answer type questions

1. Define animal cell culture

- 2. Describe cell signaling
- 3. What are cadherins
- 4. What are integrins
- 5. Describe tight junction gaps
- 6. Name two cell lines

<u>Unit 2</u>

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
 Media and its components Animal cell culture Techniques: 	Introduction to the balanced salt solutions and simple growth medium. Brief discussion on the chemical, physical and metabolic functions of different constituents of culture medium. Role of carbon dioxide. Role of serum and supplements. Serum & protein free defined media and their application. Dispersion and disruption of tissues; primary cultures, anchorage and non- anchorage dependent cells; secondary culture, transformed animal cells.	Students will learn about the nutritional requirements of animal cells and different types of media required for their growth and different animal cell culture techniques	classroom teaching with examples	R. Ian Freshney, (2010) 6th Edition, Wiley- Blackwell. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications Butler, M (1996) Mammalian cell biotechnology. A practical approach (IRL, Oxford University Press)

Question Bank

Long answer type questions

- 1. Explain the different constituents of the media and their funtions
- 2. Give the disadvantages of serum containing media and advantages of serum free media
- 3. Describe BSS media
- 4. Describe the physical, chemical and metabolic functions of the media components
- 5. Give the role of carbon dioxide in animal cell culture
- 6. Write about primary and secondary culture
- 7. Describe transformed animal cells

- 8. Explain dispersion and disruption of tissues. Write about various physical and chemical methods
- 9. Explain anchorage and non-anchorage dependent cells

Short answer type questions

- 1. What is defined media
- 2. Give full form of BSS
- 3. Write about Hanks balanced salt solution
- 4. Describe simple growth medium
- 5. Which hormones are present in serum?
- 6. What is serum free media?
- 7. Why some constituents are not autoclaved?
- 8. Define transformed cells
- 9. Differentiate between primary and secondary cultures
- 10. Difference between dispersion and disruption

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
 Cell lines Measurement of growth and viability of cells in culture 	Established/continuous cell lines, commonly used animal cell lines, their origin and characteristics. Maintenance and growth kinetics of cells in culture, differentiation of cells Measurement of growth and viability of cells in culture. Cytotoxicity assays & their applications	To learn about the cell lines, their growth and viability in different environmental conditions	classroom teaching and after discussion, students will give seminars of the same topic	R. Ian Freshney, (2010) 6th Edition, Wiley- Blackwell. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications Butler, M (1996) Mammalian cell biotechnology. A practical approach (IRL, Oxford University Press)

<u>Unit 3</u>

Question Bank

Long answer type questions

- 1. Explain different types of cell lines
- 2. Give the names of the cell lines with detail of their characteristics, origin and use.
- 3. Explain different methods to check the viability of the animal cells
- 4. Explain different types of cytotoxicity assays and their applications
- 5. Describe the maintenance and growth kinetics of cells in culture
- 6. Explain differentiation of cells

Short answer type questions

- 1. Define cell lines
- 2. Define differentiation
- 3. Define viability of cells
- 4. What are cytotoxicity assays
- 5. Name two transformed cell lines

<u>Unit 4</u>

Question Bank

Long answer type questions

- 1. What is cell fusion and describe the production of monoclonal antibodies
- 2. Give different methods of cell preservation
- 3. Write about biosafety and bioethics
- 4. Explain transformation and immortalization of cells
- 5. Explain characterization of Cell lines and their authentication

- **1.** Define cryopreservation
- **2.** Define immortalization of cells
- 3. Give names of immortal cell lines
- 4. Give four levels of biosafety in ATC labs
- 5. Define bioethics
- 6. Define cell fusion.

SESSION 2021-22

THEORY: 67 MARKS

B.Sc. HONS. BIOTECHNOLOGY- 3 SEM ASSESSMENT: 08 MARKS

Subject : plant tissue culture

Sr. no.	Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
1	Cellular totipotency	Totipotency concept, cell regenability	To understand the detailed overview of plant tissue culture	Online Classroom teaching. Examples from textbooks, life.	1. Razdan, M.K. (2007). Introduction to plant tissue culture (India Book House Pvt. Ltd) 2. Narayanaswamy, S (1994). Plant cell and tissue culture
	Plant Culture Media	Plant Culture Media and their composition. Sterilization techniques for		Presentation.	(Tata Mc-Graw Hill Publishing Co.Ltd, New Delhi). 3. Rudolf, E. (1994). Plant cell biotechnology
	Micropropagation	glassware and tissue culture media. Micropropagation: Establishment of aseptic culture, various stages, advantages and disadvantages.			 (Spinger Verlag). 4. Bhojwani, S.S., Razdan, M.K. (1996), Plant tissue culture: Theory and practice (Elsevier Science, Netherlands). 5. Gamborg, O.L.,
2	Organogenesis;	Organogenesis; somatic embryogenesis; somaclonal variation, its genetic basis and application in crop	To understand the processes of plant cell transport and cell locomotion	Classroom teaching. Examples from textbooks, life.	 Phillips, G.C. (1995). Plant cell, tissue and organ culture: Fundamental methods (Illustrated, Publisher Springer). 6. HS Chawla (2002) Plant
	haploid and Triploid plant production	improvement. Cell/callus line selection for resistance to herbicide,		Presentation.	(2003). Plant biotechnology: A practical approach (Science Publishers, USA).

		stress and			Plant Tissue
		diseases. Role			Culture and
		of tissue			Biotechnology
		culture in rapid			Dieteennoiogj
		clonal			
		propagation,			
		production of			
		pathogen - free			
		plants and			
		"synthetic			
		seeds" haploid			
		and Triploid			
		plant			
		production &			
		their			
		application. of			
		viruses and			
		toxins into			
		cells.			
3	Protoplast and	Protoplast and	Understanding	Classroom	
	somatic	somatic	hybridization	teaching.	
	hybridization	hybridization:	and fusion of	-	
		Isolation, culture	protoplast	Examples	
		and plant		from	
		regeneration,		textbooks,	
		protoplast fusion,		life.	
		identification and			
		characterization of		Presentation.	
		somatic hybrids,			
		applications of			
		protoplast			
		hybridization			
	a 1	technology.			
4	Secondary	Secondary	.	Classroom	
	metabolites	metabolites:	Introduction	teaching.	
		Secondary Plant	to secondary	Everyle	
		products from cultured cells and	metabolites	Examples from	
		their industrial		textbooks,	
		applications.		life.	
		Cryopreservation		1110.	
		of germplasm:	Production of	Presentation.	
		Short term and	metabolites.	i resentation.	
		long term	metaoomes.		
		conservation of			
	Cryopreservation	plant genetic	Preservation		
		resources, In situ	of germplasm		
		and Ex situ			
		conservation of			
		plants			
L	I	r mino	1		

Question bank:

- 1. define cell biology
- 2. draw the structure of eukaryotic cell
- 3. draw the structure of prokaryotic cell
- 4. differentiate between prokaryotic and eukaryotic cell
- 5. what are stem cell?
- 6. Difference between pluripotent and multipotent cell
- 7. What are the applications of stem cells?
- 8. What do you understand by chromosomes?
- 9. What is heterochromatin and euchromatin?
- 10. Explain different types of cell locomotion
- 11. Describe cell theory
- 12. Explain cell doctrine
- 13. Draw the stuctures of polytene chromosomes
- 14. Describe telomeres.
- 15. Explain ATP dependent proton pumps
- 16. Explain the process of endocytosis and pinocytosis
- 17. Describe ribosomes
- 18. Explain different types of cell organelles with structures
- 19. What is symport and antiport?
- 20. What are microtubules . explain

B.Sc. Hons Biotechnology 2021-22 Semester 3

Subject:-Biochemistry

Total units=4

Theory marks=67 Internal assessment= 8 Total marks =75

<u>Unit 1</u>

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
1. Metabolism	To discuss the different metabolic pathways,biochemical reaction mechanism, energy rich metabolites. Coupled reactions, substrate level phosphorylation. Importance of ATP: Structural basis of high phosphoryl transfer potential of ATP. Sources of cellular energy, activated carriers. Regulation and evolution of metabolic pathways.	To familiarize the students with the biochemical activities taking place at cellular level	classroom teaching with examples	Lehninger A.L., Nelson D.L., Cox M.M. (2005). Principles of biochemistry (W. H. Freeman, USA). Stryer L, J. M. Berg, J.L. Tymoczko (2001). Biochemistry (W.H. Freeman and Company, New York). Biochemistry – J.L. Jain

Question Bank

Long answer type questions

- 1. What are coupled reactions. Give examples
- 2. Why ATP is the energy form in cell. Explain
- 3. Explain regulation and evolution of metabolic pathways
- 4. Describe substrate level phosphorylation with examples
- 5. Explain energy rich metabolites
- 6. Write about activated carriers.

Short answer type questions

1. What is ATP

2. Define metabolism

- 3. What do you understand by energy rich metabolites
- 4. How substrate level phosphorylation is different from oxidative phosphorylation
- 5. Give importance of ATP
- 6. Define coupled reactions
- 7. Give sources of cellular energy

<u>Unit 2</u>							
Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links			
1. Carbohydrate metabolism	Biosynthesis and degradation of glucose; feeder pathways of glycolysis; Kreb cycle, amphibolic nature of the Kreb's cycle; regulation of Krebs cycle regulation of gluconegenesis. Glycogen metabolism. Mitochondrial electron transport chain, oxidative phosphorylation; regulation of ATP synthesis	Students will learn about sugar metabolism in body and energy production using carbohydrates in various cell organelles	classroom teaching and practicing of the flow diagrams on black board by the students	Lehninger A.L., Nelson D.L., Cox M.M. (2005). Principles of biochemistry (W. H. Freeman, USA). Stryer L, J. M Berg, J.L. Tymoczko (2001). Biochemistry (W.H. Freeman and Company, New York). Biochemistry – J.L. Jain			

Question Bank

Long answer type questions

- 1. How sugar is metabolized in cell?
- 2. Explain feeder pathways of glucose
- 3. Explain the energy production in tricarboxylic acid cycle
- 4. How glycogen is metabolized in cell
- 5. Explain in detail the structure and function of ATPases
- 6. Explain in delail the four enzyme complexes involved in electron transport chain reaction
- 7. How ATP synthesis is regulated?
- 8. What is amphobolic nature of kreb cycle?

- 1. How many ATP molecules are produced at the end of glycolysis?
- 2. What is the kreb cycle?

- 3. What is insulin and where it is produced in cell?
- 4. What is the location of ETC?
- 5. Explain feeder pathway
- 6. Draw the structure of ATPase
- 7. What are fates of pyruvate?
- 8. Which 3 carbon molecule is the end product of gyclolysis?

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
1. Lipid Metabolism	To learn about the biosynthesis and degradation of fatty acids; β oxidation of saturated,unsaturated and polyunsaturated fatty acids. Formation of katana bodies, their	Students will learn about the metabolism , synthesiss and regualation of various lipids	Lecture cum discussion	Lehninger A.L., Nelson D.L., Cox M.M. (2005) Principles of biochemistry (W. H. Eraaman
	ketone bodies, their function and physiological significance. Fatty acid synthesis:multifunctional enzyme complex in eukaryotes,function of citrate. Regulation of fatty acid metabolism.	various lipids in cell		Freeman, USA). Stryer L, J. M. Berg, J.L. Tymoczko (2001). Biochemistry (W.H. Freeman and
2. Cholesterol metabolism	To learn about the biosynthesis of cholesterol and its regulation			Company, New York). Biochemistry – J.L. Jain

<u>Unit 3</u>

Question Bank

Long answer type questions

- 1. What do you know about beta oxidation of saturated and unsaturated fatty acid?
- 2. Explain omega oxidation in detail
- 3. How cholesterol is metabolised in cell? Give the location
- 4. How ketone bodies are formed, explain their physiological significance
- 5. Explain the regulation of cholesterol
- 6. What is the regulation of fatty acid metabolism Explain

- 1. What is cholesterol
- 2. What are ketone bodies
- 3. Give function of ketone bodies

- 4. What are saturated and unsaturated fatty acids?
- 5. What is multifunctional enzyme complex?
- 6. Write about fatty acid synthase complex

<u>Unit 4</u>

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
 Amino acid metabolism Nucleic acid metabolism 	 Biosynthesis of nutritionally non- essential amino acids; catabolism of carbon skeleton of amino acids. Conversion of amino acids to specialized products; amino acids as precursors of porphyrins, bile pigments and biogenic amines. Biosynthesis of purine and pyrimidine nucleotides; salvage reactions. Catabolism of purines and pyrimidines, urea cycle. 	Students will learn about the biosynthesis and modification of various amino acids along with the biosynthesis and catabolism of nucleic acids.	classroom teaching with the power point presentation of the topic nucleic acid metabolism	Lehninger A.L., Nelson D.L., Cox M.M. (2005). Principles of biochemistry (W. H. Freeman, USA). Stryer L, J. M. Berg, J.L. Tymoczko (2001). Biochemistry (W.H. Freeman and Company, New York). Biochemistry – J.L. Jain

Question Bank

Long answer type questions

- 1. Explain the biosynthesis of nutritionally non essential amino acids
- 2. Explain the formation of heme proteins
- 3. Describe the salvage pathway of nucleotide synthesis
- 4. Describe urea cycle or krebs henseleit cycle
- 5. Explain the catabolism of purines and pyrimidines
- 6. Write about bile pigments and biogenic amines

- 1. What are essential and non essential amino acids?
- 2. What are porphyrins?
- 3. Give the importance of urea cycle

- Difference between denovo and salvage pathway
 Define catabolism and anabolism
- 6. What are bile pigments?

B.Sc. Hons Biotechnology2021-22 Semester 3 Subject:-Genetics

Total units=4

Theory marks=67 Internal assessment= 8 Total marks =75

<u>Unit 1</u>

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
 Mendelian laws of inheritance Sex determination Chromosomal aberrations 	 <i>Pisumstavium</i>characterstics Law of independent assortment, law of segregation, genetic crosses, back cross, test cross Sex determination in drosophila, plants and animals, sex linkage Numerical chromosome aberration polyploidy, aneuploidy,duplications, inversions,translocations, position effects. 	The primary objective is to learn about the basics of genetics with the focus on the Mendelian laws, sex determination and molecular genetics	classroom teaching with examples. Students will prepare the examples of various genetic crossses	Genetics by snustad and simons, Genetics by P.K. Gupta

Question Bank

Long answer type questions

- 1. Explain in detail law of independent assortment
- 2. Write about mendalian law of segregation
- 3. Explain test cross and back cross with 2 examples each
- 4. Write about sex linkage in animals
- 5. How sex determination can be done in drosophila
- 6. Write detailed note on numerical chromosomal aberration
- 7. Give detailed information on chromosomal aberrations

- 1. Write seven characteristics of pisumstavium
- 2. What is test cross

- 3. Explain back cross
- 4. What is aneuploidy
- 5. Define polyploidy

<u>Unit 2</u>

Торіс		Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
1.	Gene interactions	Gene interactions, sex linked inheritance	This unit will familiarize	classroom teaching with examples.	Genetics by snustad and simons, Genetics by P.K. Gupta
2.	Crossing over Linkage	molecular mechanism and cytological proof Tetrad analysis, somatic cell hybridization for gene linkage studies,	students with chromosome organization, linkage, chromosome		
4.	Recombination and genetic mapping	Hereditary defects. Recombination, linkage, gene mapping, Three point testcross, interference, coincidence, recombination frequencies, Tetrad analysis	mapping.		

Question Bank

Long answer type questions

- 1. Explain gene interactions and epistasis
- 2. Explain three point test cross
- 3. Describe tetrad analysis
- 4. Explain gene linkage
- 5. Write about crossing over and its mechanism
- 6. Describe recombination
- 7. Explain gene mapping and how genes are inherited together
- 8. Explain the various hereditary defects
- 9. Give the cytological proof of crossing over

- 1. Define cross over
- 2. Define epistasis
- 3. What is interference and coincidence
- 4. Define linkage
- 5. Define recombination

<u>Unit 3</u>

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
1. Population genetics	Hardy-Weinberg equilibrium, gene and genotypic frequencies,Chi- square test, probability, pedigree analysis.	Students will understand how genes	Lecture cum discussion	Genetics by snustad and simons, Genetics
2. Mutation	Spontaneous versus induced mutations, types of mutations, mutagenic agents: Physical, chemical and radiation, molecular basis of mutations, mechanisms of DNA repair, mutations frequency, correlation between mutagenicity and carcinogenicity	are inherited in a population and various types of mutation		by P.K. Gupta

Question Bank

Long answer type questions

- 1. Explain Hardy- Weinberg law
- 2. Describe in detail Chi square test
- 3. Explain the different types of mutations
- 4. Describe the mechanism of DNA repair
- 5. Explain the correlation between mutagenicity and carcinogenicity
- 6. Explain Ames test
- 7. Write about pedigree analysis

Short answer type questions

- 1. Define mutation
- 2. Define gene frequency
- 3. What do you understand by pedigree analysis
- 4. Name the different type of mechanisms of DNA repair
- 5. Define genotypic frequencies
- 6. Give the equation of Hardy-Weinberg law

<u>Unit 4</u>

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
-------	-----------------	------------------------	---------------------------------------	------------------------

1. Basic microbial genetics	Conjugation, transduction, transformation, isolation of auxotrophs, replica plating techniques, analysis of mutations in biochemical pathway, one gene – one enzyme hypothesis.	This unit will give the knowledge of inheritance of genes in	Lecture cum discussion	Genetics by snustad and simons, Genetics by P.K. Gupta
2. Extra chromosomal inheritance	mitochondrial and chloroplast genetic systems.	microbes.		

Question Bank

Long answer type questions

- 1. Explain the process of conjugation
- 2. Describe transformation
- 3. Write about the replica plate technique
- 4. Explain mitochondrial and chloroplast genetic system
- 5. Describe one gene-one enzyme hypothesis and experiment on *Neurosporacrassa*
- 6. How mutations are analysed in biochemical pathway

- 1. Define transduction and give the process
- 2. Define auxotrophs
- 3. Define prototrophs
- 4. Define transformation
- 5. Why replica plate technique is used?
- 6. Write about extra chromosomal DNA